FEM Simulation of Thin Plate Deformation During Edge Welding

Prof. Dr. Ing. Mircea Gh. Munteanu
University of Udine – Italy

Dr. Ing. Rastislav Kubicek
Welding Engineer – APEX Group

©Euro-Apex B.V. 1990-2012
Introduction

• Could FEM analysis be used with confidence for prediction of deformation of thin plates under the influence of heat input during edge welding?

• This presentation compares the FEM analysis results with experimental results for extremely high heating input values which destroy the plate for amplifying the effects.
Plate Edge Welding

- MAG 1,2 mm wire
- MAG 1,0 mm wire
- MIG Brazing 1,6 mm wire
- TIG without filler material

FEM simulations of thin plate deformation during edge welding
FEM Simulations

Welding speed: \(v = 80 \text{ cm/min} = 13.33 \text{ mm/s} \)

Convection coefficient: \(a = 15 \text{ W/m}^2/\text{K} = 15 \cdot 10^{-3} \text{ N/mm/s/K} \)

Heat input: \(Q = 136.51 \text{ J/mm} = 136510 \text{ Nmm/mm} \)

Power: \(P = Q / t = 136510 \times 13.33 = 1.82 \cdot 10^6 \text{ Nmm/s} \)

- Nonlinear thermal analysis: thermal properties are variable with the unknown temperature.
- Nonlinear structural analysis: large displacements and elastoplastic material (von Mises plasticity, kinematic hardening).
- Material: low carbon steel; mechanical properties are variable with the temperature.

Ansys FE mesh:
- 3876 nodes
- 3864 finite elements
 - SHELL57 finite element for thermal analysis
 - SHELL181 finite element for structural analysis
 - BEAM188 finite elements were added to model stiffeners along short sides

FEM simulations of thin plate deformation during edge welding © Euro-Apex B. V. 1990 – 2012
FEM Simulations

Detail:

Temperature distribution in the plate at $t=60$ s

Variation of point A temperature in time

FEM simulations of thin plate deformation during edge welding

© Euro-Apex B. V. 1990 – 2012
Transient Structural Analysis

\[\sigma_y \text{ versus time: blue curve – point A (midpoint of left side), red curve – point B (midpoint of right side)} \]

Final permanent \(\sigma_y \) stress (after cooling down at room temperature)

FEM simulations of thin plate deformation during edge welding
At the end of welding process and after cooling down of the plate at room temperature, two plastic strips of width g are formed. In the case of elastic-ideal plastic material, in these strings are developed a permanent compressive stress equal to $\sigma_y = \sigma_{yield}$ and a permanent strain $\varepsilon_y = \varepsilon_o = \frac{\sigma_{yield}}{E}$.

The two plastic strips are subjected to tension and therefore the plate is compressed: as a consequence a buckling phenomenon can occur.
Results

Experimental Results

Deformation of "K" design HT plate couple

Ansys results.

FEM simulations of thin plate deformation during edge welding

© Euro-Apex B. V. 1990 – 2012
Conclusions

• FEM analysis agree reasonably well with experimental results.

• FEM analysis can be used with confidence for predictions of deformation within the material during welding process
Disclaimer

• This paper is not meant for using its findings and its conclusions for any design and/or production work or any other practical purposes.